

Overview of Ammonia Mitigation BMPs and BATs

Hongwei Xin, Professor Iowa State University

An OSU Ammonia Workshop Presentation May 2, 2011, Columbus, OH

Sources of NH₃ Mitigation

- > Pre-excretion
 - ✓ Dietary manipulation
 - ✓ Feed or water additives
 - √ Genetics
- > Post-excretion
 - > Housing and manure handling schemes
 - > Indoor treatment (to reduce generation)
 - > Exhaust treatment (to reduce emission)

Pre-excretion Mitigation

Dietary Manipulation

Effect of Reducing CP Content on NH₃ Emission of High-Rise Layer Houses

NH ₃ ER (g/hen-d)			
Standard Diet	LP Diet		
0.90 (0.24-1.58)	0.80 (0.19-1.37)		

 \gt 1% lower dietary CP \to 11% reduction in NH₃ emission

Effect of Adding Dietary Fiber on NH₃ Emission from Layer Manure

24-month Data of NH₃ & H₂S Emissions of H-R Layer Houses Fed Different Diets

Gas & change	Control	DDGS	EcoCal
NH ₃ , g/hen-d	0.96 (0.05)	0.82 (0.05)	0.58 (0.05)
% reduction]	14 (5)	39 (5)
H ₂ S, mg/hen-d	1.79 (0.16)	1.99 (0.13)	5.39 (0.46)
% increase		12 (10)	202 (45)

Manure pH of Hens Fed Three Diets

Post-excretion Mitigation

Housing and Manure Handling Schemes

High-Rise Hen House

Manure-Belt House + Manure Storage

U.S. Trend in Layer Cage Systems

High-rise vs. Manure Belt Layer House NH₃ Emission Rate

Factors Contributing to Lower Emissions of MB Systems

- Reduced manure residence time and hence its decomposition in the hen house
- Reduced emission surface area in storage
- Generally cooler environment in storage
- Drying manure

NH₃ Emission (g/hen-d) vs. Hen Manure Accumulation Time

NH₃ Emission (g/bird-d) vs. Manure Accumulation Time at Different Ages

Effect of Stacking Configuration on NH₃ Emissions from Hen Manure Storage

Effects of Hen Manure Moisture & Air Temperature on NH₃ Emission

Some Practical Aspects of Manure-Belt Layer Systems

- Higher construction costs (~50% more)
- Potentially higher maintenance needs due to longevity of manure belt and conveying system
- Need of separate manure storage facility

New vs. Built-Up Litter of Broiler Houses on NH₃ Emissions

Factors to Consider in Using New vs. Built-Up Litters

- Availability and price of bedding materials
- Higher energy cost helps offset high price of bedding, hence may justify its use every flock.
- Improved bird health and performance
- Built-up litter requires more ventilation to control
 NH₃ level likely increase emissions.
- Break-even LP gas price in 1992 was \$0.75/gal.
 Analysis based on current pricing is needed.

Post-excretion Mitigation

Indoor Treatment to Reduce NH₃ Generation

Manure/Litter Additives

- Natural zeolite [(Na₄K₄)(Al₈Si₄₀)O₉₆·24H₂O]
 - Adsorption of NH₄⁺
- Acidulants (low pH)
 - Alum (aluminum sulfate)
 - Ferix-3 (ferric sulfate)
 - Poultry Litter Treatment or PLT (sodium bisulfate)

Liquid Alum

Solid Alum

Ferix-3

Zeolite

PLT

Reduction of NH₃ Emission from Stored Hen Manure by Topically Applied Additives

Additives	Application dosage			
	Low	Medium	High	
Zeolite	68%	81%	96%	
Liquid Alum	63%	89%	94%	
Alum Powder	81%	93%	94%	
Ferix-3	82%	86%	87%	
PLT	74%	90%	92%	

Topical Application of Chemical Additives in Broiler Systems

e.g., 100 – 200 lbs alum per 1000 ft² floor area recommended; with lower dosage lasting ~ 2 wk and hi dosage ~ 3 wk

Moore et al. (2000)

Some Practical Issues with Chemical Applications

- Corrosive nature of the low pH chemicals necessitates caution in applicator health/safety and housing equipment protection (e.g., fans).
- Must be re-applied to between flocks to maintain effectiveness.

Post-excretion Mitigation

Treatment of Animal Housing Exhaust Air

Exhaust Air Treatment Systems

- Dispersive Systems with some treatment
 - Vegetative Buffers
 - Windbreak Walls
 - Biomass Walls & Bio Curtains
- Exhaust Air Treatment Systems
 - Biofilters
 - Single Stage Biological Scrubbers
 - Single Stage Acid Scrubbers
 - Multi-Stage, Multi-pollutant Scrubbers

Vegetative Environmental Buffer

Data reported from a broiler house in DE:

- PM reduction: 49±27% (33 d)
- NH₃ reduction: 46±31% (29 d)
- Odor reduction: negligible

Biocurtains or Biomass Wall

Reduce dust emissions by 17-20% from poultry houses. Cost ~ \$5000 per tunnel-ventilated house

Bio-filters and Scrubbers

- Biofilters provide good odor control but limited ammonia control.
- Acid scrubbers provide good ammonia control but limited odor control.
- Multi-stage units that include an acid scrubber and a biofilter component can provide both odor and ammonia control.

Biofilters

- Have been used for odor control of swine houses in Germany for 20+ years (Oldenburg Biofliters)
- Have been researched and demonstrated in the US for more than a decade (Nicolai, Jacobson, Hoff, and others)

Open-faced Biofilter System

Biofilter on a German Swine Farm

Acid and Multi-Stage Scrubbers

- Commercial (single or multi-stage) units are being adopted to control NH₃ and odor for animal housing in Germany and Holland.
- As of January 1, 2008, 10% of swine barns & 0.4% poultry barns in Holland used exhaust air scrubbers for NH₃ removal.
- Research are being conducted in US on acid scrubbers for poultry houses (AR, OH).

Acid Scrubbers

- A weak sulfuric acid solution (pH of 2 4) is re-circulated over the surface area of the scrubber as exhaust air passes over it.
- Gaseous NH₃ reacts with the acid to form ammonium (NH₄) salt and is retained in the solution. When solution pH >4, it is replaced and the spent solution is stored until reprocessing or use as a nitrogen fertilizer.

Scrubber Design

2-stage scrubber

3-stage scrubber

Dust Removal

Ammonia Removal

Odor Removal

A G-F pig barn in Germany

- Bacterial digestion with biofilter
 - Volatile fatty acids
 - Sulfuric compounds

Farm Installation of Air Scrubber (G-F Pig House in NL)

Acid Scrubber

The system requires on-farm storage of both fresh and spent acid solutions.

Farm Installation of Air Scrubber (Broiler House in NL)

Measured removal efficiencies for NH₃, odor, and PM by farm-scale multipollutant scrubbers in the Netherlands

Ammonia	Odor	PM ₁₀	PM _{2.5}
63 – 98%	0 – 83%	41 – 46%	23 – 61%
Avg: 81%	Avg: 40%	Avg: 43%	Avg: 42%
(n = 7)	(n = 8)	(n = 2)	(n = 2)

Source: Melse et al. (2008)

Investment and Operational Costs of Scrubbers for Newly Built Facilities in \$ per Pig Space

Cost Type	Acid Scrubber	Multi-stage Scrubber
Capital	\$47	\$72
Operational (per year)	\$15	\$19

Source: Melse et al. (2008)

Challenge of Dust to Scrubbers

Wet scrubber for controlling NH₃ and dust developed by ARS (P.A. Moore)

Slide credit: P.A. Moore – USDA ARS

Moore is evaluating the efficacy of this system for scrubbing NH_3 from the broiler house exhaust air. Moore reports the construction cost of this system to be $\sim 1000 .

SUMMARY

- Nutritionally balanced hen diets with lower crude protein helps reducing ammonia (NH₃) emissions w/o adverse impact on hen production performance.
- EcoCal (7%) and DDGS (10%) diets have been shown to reduce NH₃ emissions from high-rise layer houses by 39% and 14%, respectively, based on a 2-year field study.

SUMMARY

- Frequent removal of manure from animal houses improve IAQ and significantly reduce house-level ammonia (NH₃) emissions.
- Ammonia emission rate increases with hen manure accumulation time (1 7) days.
- Reducing manure storage surface area reduces NH₃ emissions; higher manure MC or temperature lead to higher NH₃ emission.

Summary

- Litter additives are commonly used in broiler and turkey productions systems to reduce in-house NH₃ levels.
- Exhaust air scrubbers for NH₃ and odor control are being applied to swine and some poultry systems in Europe, but have not been adopted on a commercial scale in the US.

Hongwei Xin, Professor Iowa State University

hxin@iastate.edu

http://www.ans.iastate.edu/EIC

