Quality of compost and bedding issues Compost Bedded Loose Housing Dairy Barn

Success for the dairyman is based on both the management of the bed and the language behing and the Lapsendilgusinge Dairiyon Baffn within the structural envelope

Management of the Bedded Pack

What we have learned from assessment of compost beds

Barn Facility Measurements

Environmental Measurements

 Air temperature, relative humidity, and air velocity and wind direction (0.05 and 1.2 m);

Bedding Temperature Measurement

Bedding temperature - surface and two different depths (0.10 and 0.20 m);

Bedding Moisture Measurement

Bedding moisture - surface to 0.20 m

Stocking Density

Average Water Holding Capacity = 72.7%

Temporal Compost Bed Monitoring

Bed Moisture Content Effects on Bed Particle Size

Bed Carbon/Nitrogen Ratio

Temporal Compost Bed Monitoring

Stirring the Bed

2 x per day religiously

10-12" Stirring Depth

Tillage

How Can You Reduce Bedding Use In Winter

- Allow cow access to pasture in good weather
- Increase air circulation in barn when cows are milking or in pasture
 - But not to point of losing too much bed temperature
- Use kiln dry sawdust in winter, green sawdust during warmer weather
- Stockpile and/or store kiln dry sawdust under roof or tarp

Why Don't All Packs Work?

- Stocking density
 - too many cows! Poor distribution of cows
- · Bed material used
 - straw, cedar
- Insufficient bedding volumes
- Inadequate/ineffective stirring
 - Stirring frequency (less than 2x/day)
 - Depth of stirring (<10-12")
 - Compaction from tractors
- Starting pack in the late fall/winter
- Too much ventilation in winter
 - no curtains
- Barn design flaws

What we have learned from assessment of barn structural details

Potential Design Flaws

- Not enough space per cow
- Inadequate ventilation
 - Sidewalls too low (<16')
 - Too close to other buildings
 - Too small ridge opening
 - Poor ridge opening design
 - Fan availability/placement
- Lack of eave overhangs or curtains to block rain and cold wind
- Building orientation
- Walls along pack?

- Proximity to feed
- Not enough feed bunk space (24 to 30" per cow)
- Not enough water space (2 feet of tank perimeter per 15 to 20 cows
- Cow flow/traffic bottlenecks
- Waterers in pack
- Concrete base?

Barn Ventilation

Ridge Design

Airflow Patterns

The smoke was visually observed when it was passed through and over the ridge opening

Develop CFD model of compost barn

Develop CFD model of compost barn

Overshot

Position in the Landscape

HIGH GROUND:

- To reduce the effects of local obstructions such as trees and other buildings
- -Takes advantage of upslope air currents

HILLSIDE CUTS:

DEPRESSIONS:

- -In upland wind shadow
- -Bowl depression subject to temperature inversions
- -Does reduce winter radiation losses to sky

Feedbunk Space

Waterer Space

Compost Bedded Pack Success

Maintain bed temperature for:

- destruction of pathogens
- increased moisture vaporization

To generate enough heat --

Need to have a high porosity bed for a level of oxygen to sustain the compost process. (But not too high or too low)

- Bed stirring
- Bedding type
- Bedding particle size

Stirring the Bed

Wheels following tillage tool leads to compaction and lower temperatures

Moisture Levels

Just right leads to clean, comfortable conditions for cow

Too wet leads to poor conditions and a dirty potentially cold stressed cow

Waterers in bed area can create a too wet condition

Type Bedding Materials

Type Bedding Materials

Sawdust

Shavings

Sawdust/ Shavings

Type Bedding Materials

Not Recommended

Wood chips

Hammer milled

What are Alternative Bedding Sources

- · Efforts underway to increase sawdust supply
- Green vs kiln dried sawdust
- · Ground corn cobs
- Finely chopped soy straw/stubble
- Kenaf?
- · Peanut shells?
- Other ideas?
- Need more definitive research and producer ideas and cooperation to answer these questions

Some Concerns for Greenhouse Gas Generation

Questions?

Soil Aggregate Microenvironment Model

Distribution of physiological properties within an aggregate/particle. Lines represent isobars of O_2 concentration (%). $c_{oyne, 2010}$.

Typical Soil Aggregate
Sylvia, et al. 2005. Prin. & Appl. Of Soil Micro.

ylvia, et al. 2005. Prin. & Appl. Of Soil Micro Pearson. Upper Saddle, NJ.

Structure Dimensions

Barn

Bedded Area

Roof Pitch

Barn Orientation

Side Wall Eave Height

Ridge Opening to Barn Width Ratio

Ridge Opening Detail

- Apparent vs Effective -

Compost Bedded Pack

Pack Moisture Control

- Biological activity generates heat which helps to dry the bedding material
- Bedding cannot absorb all the water from urine and manure without evaporation of water
- Too wet of a bedded pack reduces aeration, slows biological activity, slow heat generation and water evaporation

Modeled water evaporation (kg/m²)

Composted Bedded Pack

Water in Bedding

Modeled water evaporation (kg/m²)

Bedded Pack

COMPOSTING BED MATERIAL INCREASES WATER EVAPORATION

INCREASING AIR
VELOCITY OVER BED
MATERIAL
INCREASES WATER
EVAPORATION