Gas Emissions from Manure Storages and Abatement Challenges and Opportunities

By: Lingying Zhao

Associate Professor and Extension Specialist

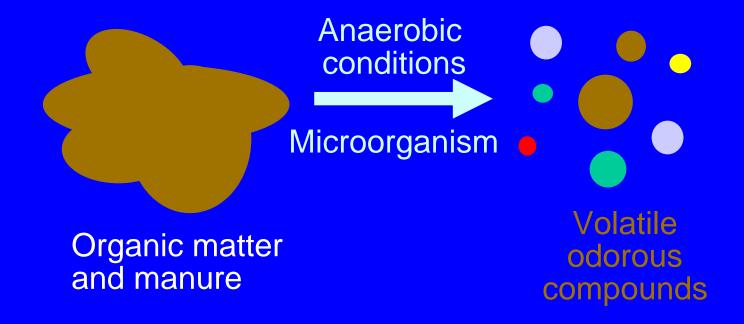
Dept. of Food, Agri. and Biological Engineering

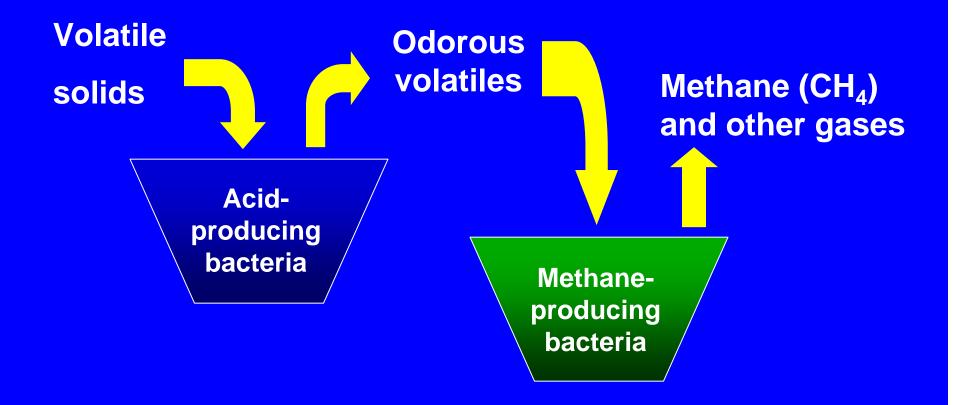
The Ohio State University

Overview

- Introduction
- What emits from manure storages?
- How much and so what?
- Abatement options: challenges and opportunities
- Summary

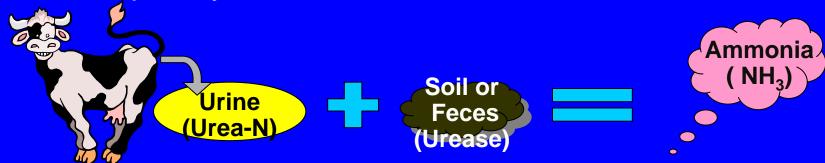
A free-stall dairy facility


Manure Storage Ponds and Lagoons


Gas Emissions from Manure Storages— Is Odor the Only Concern?

Odor and VOCs from AFOs

 Odor -- unpleasant smells caused by gases and more than 160 odorous Volatile Organic Compounds (VOCs).



Complete Anaerobic Digestion

Ammonia and Hydrogen Sulfide Gas

 Ammonia (NH₃), is generated because inefficient conversion of feed N to animal products resulted in N excretion in urine of pigs and cattle and in the uric acid of poultry.

 Hydrogen sulfide (H₂S) is a colorless gas and generated from anaerobic fermentation of manure.

Greenhouse Gas emissions (GHGs)

- Nitrous Oxide (N₂O) is a potent greenhouse gas produced by microbial processes of nitrification and denitrification.
- Methane (CH₄) is an odorless natural gas, odorless, and produced by microbial degradation of organic matters under anaerobic conditions.
- Carbon dioxide (CO₂) is a part of natural air, odorless, and mainly caused by animal breathing and manure decomposition.

How much?--Gas Emission Rates and Factors

Methane (CH₄) Emission

- According to the USEPA NEI, in 2006, methane emissions from enteric fermentation and manure management represent 23% (126 Tg CO₂ Eg.) and 8% (41 Tg CO₂ Eg.) of total methane emissions in the U.S.
- Preliminary research:
 - >12 g per cow per hour (UC Davis research, Sun et al., 2008)
 - 8.5-13.7 g CH₄ per day per cow from manure storages (Kulling et al. 2001)
 - 1.5 kg CH₄ per pig per year (Guimont et al. 2007)

Ammonia (NH₃) Emission

- The EPA NEI estimates 2,418,595 tons of NH₃ emission from agricultural sources in 2002, which is about 80% of total ammonia emissions to the atmosphere.
- USDA estimates suggested that 36-90% of the nitrogen inputs to anaerobic lagoons were lost to the atmosphere (Hatfield et al., 1993).
- Research findings: NH3 emission rates from the open manure storages varied significantly: 1-40 g NH₃ per square meter per day (Hobbs et al. 1999; Gay et al. 2002; and Aneja et al, 2000).
- In Ohio, annual mean NH3 emission rate was 71.6±57.8 µ g/s-m² and ranged from 5.7 to 174.8 µ g/s-m². (Zhao et al 2007), which is within the range of NH3 emission (46.1-198 µ g/s-m²) from dairy manure storages at Minnesota (Gay et al., 2003).

Impact of Gaseous Emissions

Aerial Environmental Impacts - Atmosphere visibility, acidity, and ozone formation

- Ammonia (NH₃)—Environmental acidity and precursor of small particles (PM_{2.5}) affecting atmosphere visibility
- Hydrogen sulfide (H₂S)—forming small particles affecting atmosphere visibility
- VOCs— Ozone formation due to interaction of VOCs with oxides of nitrogen. Ozone is toxic to breath and is a precursor of toxic chemicals and fine particles.

Aerial Environmental Impacts – Global Warming

- Carbon dioxide (CO₂)—a greenhouse gas (GHG)
- Methane (CH₄) -- a GHG and bioenergy gas and has 23 times global warming potential than CO₂.
- Nitrous Oxide (N₂O) a potent GHG and has 296 times global warming potential than CO₂.

Odor-Nuisance and trigger of public complaints

- Odor may cause great mood disturbance, and in turn cause nuisance.
- Odor is often a trigger of other public complaints.
- Limitation of odor measurement and subject response of human being, make it difficulty to assess impacts of odor on people's quality of life quantitatively.

Abatement Options

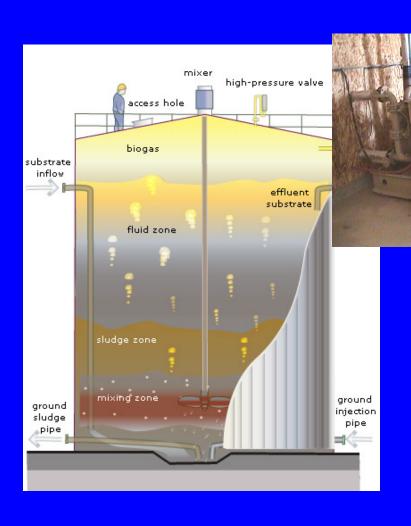
Best Management Practices (BMPs) and Best Available Technologies (BATs)

- Feed Management and Manure Additives
- Aeration of lagoon
- Anaerobic lagoon, digester
- Covers
- Other

Additives

Many additives are available to add to pits, lagoons, or animal feed. They work in different ways. Some are chemical, microbial, enzymatic, disinfectants, deodorants, adsorbents, and others. Some work; some do not.

Surface Aeration of Lagoons


- Complete aerobic treatment eliminates odors, but may promote ammonia emission and other gas emissions.
- Aeration requires large amounts of energy.

Anaerobic Lagoons

- Anaerobic lagoons--Anaerobic treatment of manure taking place in the absence of oxygen
- Designed as an Odor abatement
- Do not function well in cold climate (<50° F)
- Generate methane and other gas emissions

Anaerobic Digesters

- Produce methane gas
 - Generate electricity
 - Convert to hot water
- Digesters can be expensive
 - require additional management
- Odor and gas reduction

Floating Permeable Covers

- Natural crust
- Biomass material, such as straw
- Clay ball cover on concrete slurry pit

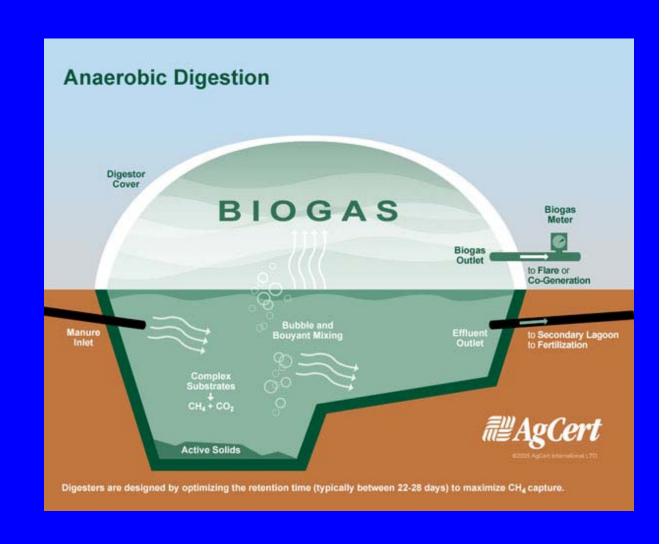
Impermeable Synthetic Covers

- Rigid (wooden or concrete) or flexible (plastic) covers hold gases and odors inside manure storages
- Most flexible covers float on the liquid surface.

Effects of Permeable Covers

- Reductions of odor and H₂S are generally >50%
- Increased emission of CH₄ (up to 30%)
- NH₃ reductions by >70%

Effects of Impermeable Covers


- Gas emissions reduction efficiencies of an inflated cover 80% - 95% (Funk et al.,2004)
- Odor reduction 50-80% (Bicudo et al., 2001)
- NH₃ reduction 50% to 90% (Misselbrook et al., 2005)
- H₂S reduction emission up to 80% (Bicudo et al., 2001)

 Effects on GHG have not been reported

Manure Storages with Covers -- Natural Temperature Digester

- Reduced odor, NH₃, and H₂S emissions
- Captured CH₄
- Relatively low cost
- Simple management
- Fluctuated CH₄ production

Flaring CH₄ for Carbon Credits

- Flaring methane captured by covers creates carbon credits
- Carbon credits are another line of income to farmers
- ECC has contracted several dairies across the US under its <u>lagoon cover program</u> to carbon credits
- Methane captured is a potential source of on-farm energy. Better use of the biogas collected need to be explored.

Summary of Covers and Performance

	Effectiveness (%)					Capital cost	
Type of cover	Material	Odor	H ₂ S	`ŃH3	Life expectancy	(ÚS\$/yd ²)	Reference
Impermeable	Concrete lid Wood lid Inflatable plastic Floating plastic (HDPE)	95 95 95 60-78	N/A N/A 95 90	N/A 95 95 N/A	10-15 years 10-15 years 10 years 10 years	N/A N/A 7-15 3-5	1 1,2,3 1,4 5
Permeable	Straw Geotextile Geotextile + straw Leca® Macrolite®	40-90 40-65 50-80 90 60	80-94 30-90 60-98 N/A 64-84	25-85 0 8-85 65-95 N/A	Up to 6 months 3-5 years N/A 10 years 10 years	0.25-1 1.25-1.6 1.5-2.6 15.45 15.45	1,5,6,7,8,9 9 9 3,7 5
References	1 Mannebeck, 1985 2 DeBode, 1991 3 Sommer et al., 199	5 (-	1 Gaakeer, † al., 1999 us, 1993	8 Ja	indy et al., 1997 cobson, 1998 anton et al., 2001	

Cover Design Considerations

- Purpose of the cover
 - Reduction of odor
 - Reduction of specific gases
 - Reduction goal
- Type of storage
 - Permeable cover on earth structures
 - Impermeable covers not easily installed on earthen structure
 - Concrete lids don't work on steel tanks or earthen structures

Cover Design Considerations

- Size of storage
 - Bio-cover not practical on structures +2 acres
- Manure Management
 - Geotextile/HDPE fabrics not recommended for storages that are pumped frequently or rigorous agitation
 - Impermeable covers do not permit rainfall from entering system or for evaporation out of the system
 - Permeable covers allow rainfall in but may restrict evaporation
- COST!!!

Summary

- Manure storages are major sources of air emissions on farms including odorous gases and greenhouse gases.
- Air emissions are of significant environmental impacts.
- Among gas emission abatement options, covers and anaerobic digesters not only reduce gas emissions, but also generate carbon credits.
- Research is needed to quantify methane emissions from manure storages for better reporting and accurate calculation of carbon credits.