

Ammonia Emissions from U.S. Broiler and Turkey Houses

Hongwei Xin, Professor Iowa State University

An OSU Ammonia Workshop Presentation

May 2, 2011, Columbus, OH

Presentation Outline

- Advancement in monitoring of ammonia (NH₃) emissions from animal production facilities
- European and U.S. data on broiler and turkey NH₃ emissions
- An application of the U.S. emissions data

U.S. Broiler & Turkey Production Characteristics

- Mostly built-up litter, decaking between flocks, litter treatment
- Tunnel ventilation, esp. for broiler houses, some use hybrid system
- Cooling pads or misters
- Pancake brooders & space heaters
- Broilers marketed at 6-9 wk
- Hen & tom turkeys at 12 & 20 wk

Evolution of Aerial NH₃ Concentration Monitoring Devices/Methods

Colormetric tube with Pump 15% - 20% accuracy \$400

Electrochemical 3% accuracy \$900

Portable Monitoring Unit (PMU) Purged Electrochemical, \$4000

Evolution of Aerial NH₃ ConcentrationMonitoring Devices/Methods

Improved Ability to Accurately Determine Building Ventilation Rate

All fans are not made equal!

Performance of 36" & 48" fans in the field

In-situ Vent Fan Testing with FANS

Prior to 2000, NH₃ Emission Data Were from European Broiler Houses

Country	ER, g/d-bird	Litter & Market Age	
UK (1999)	0.11	_	
UK (1997)	0.26	Typically new bedding for each flock. Birds are marketed at much younger age than in the U.S., generally 32-35 d.	
UK (1998)	0.48		
Denmark (1998)	0.21		
NL (1998)	0.27		
Germany (1998)	0.44		
Average	0.30		

NH₃ Emission Rate (ER) of U.S. Broiler Houses

Growth Period, d	Market BW, kg (lb)	ft²/bird	No. Flocks (season)	Litter Status	ER, g/d-bird	Location (yr)
42	2.2 (4.8)	0.73	10 (all)	New	0.47	KY & PA (06) ¹
42	2.2 (4.8)	0.73	12 (all)	Built-up	0.65	KY & PA (06) ¹
49	2.5 (5.5)	0.81	24 (all)	Built-up	0.76	KY & PA (06) ¹
49	2.4 (5.3)	0.80	12 (Su, F)	Built-up	0.63	TX (03) ²
52	2.8 (6.2)	0.85	3 (all)	New	0.49	KY (07) ³
52	2.8 (6.2)	0.88	9 (all)	Built-up	0.62**	KY (07) ³
63	3.3 (7.3)	1.00	20 (all)	Built-up	0.98	KY & PA (06) ¹

^{**} Downtime NH₃ ER: 0.38 g/d-bird (average downtime of 8 d)

¹Wheeler et al (2006), ²Lacey et al. (2003), ³Burns et al. (2007)

Daily NH₃ Emissions of Broiler House in KY, Including Growout & Downtime

No. of birds/house: ~25,000 (straight run or mixed sex)

Cumulative per Bird NH₃ Emission of Broiler Houses in Kentucky

Annual Cumulative Per-Bird NH₃ Emission of Broilers at Different Market Ages

(modeled based on data by Wheeler et al., 2006)

Roaster: 63 d, Heavy broiler: 49 d, Broiler: 42 d

Gates et al. (2008)

Daily NH₃ Emissions of Tom Turkeys in IA, Including Grow-out & Downtime

Daily NH₃ Emissions of Hen Turkeys in MN, Including Grow-out & Downtime

Li et al. (2010)

Cumulative per Bird NH₃ Emission of Hybrid Turkeys in IA and MN

Daily NH₃ Emission Rate (ER) of Broiler Houses – Pooled European & US Data

Daily NH₃ Emission Rate (ER) of Turkey Houses in Iowa (tom) & Minnesota (hen)

Consequence of Estimating Turkey NH₃ Emissions with Broiler Data

Bird Type	Growth period, d	Market BW, kg (lb)	NH ₃ Emission, g/bird marketed
Tom Turkey	140	17.9 (39)	151#
Hen Turkey	84	6.7 (15)	62#
SR Broiler	52	2.8 (6.2)	35.4
TT/B ratio		6.5	4.3
HT/B ratio		2.4	1.8

[#] Including estimated emissions (10 g/bird) during 5-wk brooding on new bedding

Using T/B BW ratio would yield NH₃ emission of 230 g for TT & 85 g for HT!

An Example of Broiler NH₃ Emission Data Application

Estimate annual NH_3 emission of a broiler barn, 40 x 500 ft, that raises mixed-sex birds till 52 day. The barn grows 6 flocks per year, and the litter is removed once a year.

Assumptions: initial placement = 25,000; livability = 95%

AE = 1 flock emission with new bedding + 5 flocks of emissions with built-up litter + emission during downtime

 $AE = (0.49 \times 52 + 0.67 \times 52 \times 5 + 0.38 \times 53) \times 25,000 \times 0.95$ = 5,221 kg/yr = 11,486 lbs/yr = 5.74 tons/yr

Summary

- NH₃ emission data for commercial broiler houses have been collected extensively in KY, PA and TX.
- Litter management greatly affects emissions, with new bedding per flock substantially reducing NH₃ emissions (20-30% reduction).
- Turkey NH₃ emission data are much limited, with only one long-term study in the Midwest IA & MN.
- Extrapolation of broiler NH₃ emission data to turkeys would lead to erroneous results (overestimation).

