COW-FOCUSED MANAGEMENT, PERFORMANCE, AND MILK QUALITY CONSIDERATIONS

Jeffrey Bewley
Randi Black
Joe Taraba
George Day
Flavio Damasceno
Jeffrey Bewley

Compost Bedded Pack Barn Concept

- Loose-housing with large, open resting area
- Potentially improved cow comfort
- Not your grandfather's bedded pack barn!
- Intensively managed compost process
- Depends on aerobic digestion of sawdust, manure, and urine
- Compost temperature dries bedding

FACILITY TRANSITION CASE STUDY

Gravatte et al., 2009

CLEAN COWS

PACK MANAGEMENT

- 1.5 to 2 feet of bedding to start, may take 2-4 semi-loads of sawdust
- New bedding (4-8") added when pack starts looking moist
- New bedding added every 1-8 weeks (more when humid or wet and in winter)
- Packs cleaned 1-2 times per year (fall & spring)
- Leave 6-12" (top layer) of old material to help start microbial activity

AERATION

- When cows are out of the barn during milking
- Start as soon as new sawdust is added
- Aerate at least 10-12"
- Stirring both lengthwise and crosswise may improve aeration
- Cultivator, tines, or roto-tiller
- Use caution with heavy equipment, may cause compaction

KEYS TO MANAGING A CBP BARN

WHY DON'T ALL PACKS WORK?

- Barn design flaws
- Stocking density (too many cows!)
- Material used (straw, cedar)
- Stirring frequency/depth
- Inadequate/ineffective stirring
- Compaction from tractors
- Starting pack in the winter
- No curtains in winter

MANAGEMENT CHECKS

- Temperature: 110 to 150° F or "just hot enough you don't want to touch it"
- Moisture: 45 to 55% or can you form a ball without too much water
- Fluffiness: subjective (looking for give in bedding as you walk across it)
- Distribution of cows within barn
- Dirty cows (next to last resort)
- SCC or clinical mastitis (last resort)

2011 COMPOST STUDY

- 43 Kentucky farms (51 barns)
- October 2010 to March 2011
- Compost samples collected from 9 equally distributed locations throughout each barn to produce a composite sample
- Producer questionnaire
- DHIA data

PRODUCER CITED BENEFITS OF CBP BARNS

Improved cow comfort (n = 28)

Improved cow cleanliness (n = 14)

Low maintenance (n = 11)

Good for heifers, lame, fresh, problem, and old cows (n = 10)

Natural resting position (no stalls) (n = 9)

Improved feet and legs (n = 8)

Proximity to parlor (compared to pasture) (n = 8)

Decreased SCC (n = 6)

Increased heat detection (n = 6)

Ease of manure handling (n = 3)

Increased dry matter intake (compared to pasture) (n = 3)

Increased production (n = 3)

Increased longevity (n = 3)

Fewer leg and teat injuries (n = 2)

Minimizes time standing on concrete (n = 2)

RESULTS AND DISCUSSION HISTORICAL SCC

RESULTS AND DISCUSSION DHIA DATA

Changes in productive parameters for primary housing farms before and after moving into a CBP

Parameter	Before ¹	Transition ²	After ³		
Daily milk production,	29.3 ± 0.3^{a}	30.1 ± 0.3^{ab}	30.7 ± 0.3^{b}		
kg					
Rolling herd average, kg	$8,937 \pm 79^{a}$	$9,194 \pm 73^{b}$	$9,403 \pm 74^{b}$		
SCC, cells/mL	411,230 ±	305,410 ±	275,510 ±		
¹ Before represents the 12 m before moving into the CBP 19,704 ^b 20,080 ^b					
2Transition represents the 12 m after maying into the CDD					

²Transition represents the 12 m after moving into the CBP

Transitioning or lot to help closer

Can achieve low SCC in CBP

→ proper management and parlor procedures essential for maintain udder health

ion to total n → better agement

accool

³After represents the 13 to 24 m after moving into the CBP

⁴Different subscripts within a row denote a significant difference (*P* < 0.05)

Culling rate before and after moving into a CBP barn used as primary housing

Calculated using 12 months before move in and 6 to 12 months after move in

SCRAPING FREQUENCY EFFECT ON HYGIENE

Hygiene depends on management!

HYGIENE SCORING

- Four hygiene categories (Cook, 2007)
- 1: clean, little or no evidence of manure
- 2: clean, only slight manure splashing
- 3: dirty, distinct pieces of manure
- 4: filthy, confluent pieces of manure
- At least 50 cows per barn
 - If fewer than 50 cows, every cow was scored
- Cows randomly selected based on tag number (i.e. multiples of 3, even tag number)

Hygiene Score Graphs

HYGIENE

- Heat generated by composting process dries bedding material creating a drier lying surface
- Drier packs decrease hygiene score which may reduce exposure to mastitis pathogens
- Effective composting more critical to cow hygiene during winter

BACTERIA LEVELS

Bacteria	N	Mean	Standard Deviation
Escherichia coli	43	13.31 log ₁₀ cfu/g	1.44
Coliform	43	14.07 log ₁₀ cfu/g	1.30
Streptococcal species	43	16.04 log ₁₀ cfu/g	1.63
Staphylococcal species	43	17.54 log ₁₀ cfu/g	1.09

BACTERIA

- Bacteria load high in all compost bedded packs
- Coliform and Staphylococcal species seem to thrive in optimal composting conditions
- Streptococcal species may be more susceptible to composting heat
- Addition of bedding material may reduce competition for carbon sources of bacteria and composting microbes
- Bacteria likely flourish in warmer ambient conditions

CONCLUSIONS

- Managing the CBP moisture and temperature can improve cow hygiene, which may help in the prevention of mastitis
- Each bacteria acts differently in the composting environment (Streptococcal species most affected)
- Mechanism for reduced SCC in CBP cannot be explained by bacteria content:
 - Dry resting surface
 - Immune function???
 - Clinical mastitis incidence and milk culture study needed
- Future studies may examine fewer farms over a longer period of time to reduce farm to farm variation and account for ambient differences

STOCKING DENSITY

WATER SPACE

RECOMMENDED FACILITY CHANGES

Increase size or capacity of the barn (n = 15)

Larger ridge vent (n = 5)

Higher sidewalls and improved ventilation (n = 12)

No posts in pack (n = 4)

Add a retaining wall (n = 6)

Change number or location of waterers (n = 4)

Add Curtains (n = 5)

Change location or size of feed bunk (n = 4)

More fans (n = 5)

Length of overhang or eaves (n = 3)

BUILDING DESIGN: NEW RECOMMENDATIONS

- Curtains in winter
- East-West orientation
- Ridge with cap
- Build for number of cows milking in winter
- Consider milk production and cow size
- Multiple entrances beneficial
- Start thinking about feed and water space early
- Be careful with fan sizing and placement

MANAGEMENT: NEW RECOMMENDATIONS

- Think about summer and winter as different systems
- Packs must be stirred twice per day every day, no exceptions
- Don't try to start packs in winter
- Green sawdust is OK (just use more of it)
- Stir pack when new bedding is added (don't skip milkings)
- Waiting until "bedding sticks to cow" is too late
- Use e.coli vaccines (J5, J-VAC, or ENDOVAC-BOVI) as insurance
- Best stirring strategy is roto-tiller 1X/day with cultivator 1X/day

QUESTIONS

Jeffrey Bewley, PhD, PAS 407 W.P. Garrigus Building Lexington, KY 40546-0215 Phone: 859-257-7543 Fax: 859-257-7537 jbewley@uky.edu

