Overview of NH₃ Emission from Poultry Facilities and the BMPs and BATs

Lingying Zhao

Associate Professor and Extension Specialist Dept. of Food, Agri. And Biological Engineering The Ohio State University

 \cdot H \cdot E

Outline

- Ammonia (NH₃) and its generation at animal farms
- NH₃ emissions from poultry facilities
- Its health and environmental impacts
- Overview of the BMPs and BATs
- Summary

What is Ammonia (NH₃)?

- A gas (NH₃), colorless, light than air, highly soluble in water, and has a sharp pungent odor detectable at 5 -18 ppm.
- Ammonia has two forms, gas phase and liquid or solid ammonium phase.
- one of the important forms of nitrogen (NH₃, NH₄+, NO₃-, NO₂-, N₂O, NO_x and atmospheric N₂) participating in the nitrogen cycle.
- Reacts with gaseous nitrate and sulfate for form fine particles.
- used for the production of fertilizers, nitric acids, fuels, explosives, and refrigerants;

4

Ammonia Gas and Ammonium

Ammonia easily convert from gaseous phase to liquid and solid phase ammonium (NH₄+) as pH changes.

$$NH_3 + H_2O \longleftrightarrow NH_4OH \longleftrightarrow NH_4^+ + OH^-$$

- pH=9.25 (>7)
 - ⋆ 50% as un-ionized (NH3)
 - ★ 50% as ionized (NH₄+)
- pH<7</p>
 - ⋆ 99% as ionized (NH₄+)

How NH₃ is Generated?

- NH₃ is generated because inefficient conversion of feed N to animal products resulted in N excretion in urine of pigs and cattle and in the uric acid of poultry.
- The fecal enzyme urease catalyzes the hydrolysis of urine urea to form ammonia gas.
- Aerobic decomposition of uric acid of poultry also form ammonia gas.
- Mineralization of undigested protein also result in ammonia gas emission

+

How NH₃ is Generated (cont)?

- ⋆ Urine (swine and cattle)
 - Urea hydrolysis $CO(NH_2)_2+H_2O \rightarrow CO_2+2NH_3$
- ⋆ Uric acid (poultry)
 - Aerobic decomposition of uric acid $C_5H_4O_3N_4 + 1.5O_2 + 4H_2O \rightarrow 5CO_2 + 4NH_3$
- * Undigested protein
 - Mineralization → NH₃

Fate and Transport of NH₃Cont...

- ★ After released from the sources, ammonia will disperse vertically and horizontally in the atmosphere.
- ⋆ Dry and wet deposition will happen near the sources.
- * It has a lifetime of 1-5 days in the atmosphere.
- ★ Chemical reactions with other chemicals in the atmosphere form fine particles.
- ★ When is converted to NH₄+ aerosols, the lifetime increases up to 15 days.

Ammonium ion wet deposition, 2001

National Atmospheric Deposition Program/National Trends Network http://nadp.sws.uiuc.edu

Factors Affecting NH₃ Emission and Transport

- Dietary Factors
 - * Excess crude protein in diet
 - Low conversion of dietary N to animal products
 - ⋆ Total nitrogen content
- Environmental Factors
 - ⋆ pH
 - * Temperature
 - * Moisture content
 - ⋆ Chemical and microbiological activities--additives
 - * Ammonia concentration of air
 - Ventilation air / wind speed
- Manure Handling
 - * Manure storage time
 - ⋆ Diffusive and convective transport in the manure

Ammonia Emissions from Poultry Facilities

How Much NH₃ is Emitted?

¹ http://pubwiki.extension.org/mediawiki/files/7/70/08junPPmartin.pdf

² USEPA, 2002. http://www.epa.gov/ttn/chief/ap42/ch09/related/nh3inventorydraft_jan2004.pdf

High-rise deep-pit (HR) layer barn

Manure-belt (MB) layer barns

Manure-Belt Barn— NH₃ Concentration & Emission

Ammonia Concentrations & Emissions from Manure-Belt Layer Facilities

Seasonal Variations in Ammonia Concentrations and Emissions

A Summary of NH₃ Concentrations and Emissions of Layer Facilities

Poultry Layer Facilities	Daily Average NH ₃ Concentration (ppmv) Mean (Min-Max)	Daily Average NH ₃ Emissions (g/d/bird) Mean ± Std
High-Rise Deep-Pit Barns	40 (0-90)	1.03 ±0.39
Manure-Belt Barns 1— daily 1/7 manure removal	9.1 (0-25)	0.29 ± o.27
Manure-Belt Barn 2— manure removal every 3 day	6.7 (0-19)	0.16 ± 0.13
Manure Composting Facilities	130 (66-278)	0.32 ± 0.14

U.S. Broiler & Turkey Facilities

- Mostly built-up litter, some with litter treatment
- Tunnel ventilation or hybrid system
- Cooling pads or misters
- Pancake brooders & space heaters
- Broilers marketed at 6-9 wk
- Hen & tom turkeys at 12 & 20 wk

NH₃ Emission Rate (ER) of Broiler Houses – European & US Data

NH₃ Emission Rate (ER) of Turkey Houses in I owa & Minnesota

Health and environmental impacts of Ammonia Emission

Its impact on Human health

The heath effects of ammonia have been recognized through extensive literature.

Concentration (ppm)	Length of exposure	Health effects
50	< 24 hours	Slight, temporary eye and throat irritations and urge to cough
100	6 weeks	Irritation of eyes, nose, and throat
500	30 mins	Increased air intake into lungs, sor nose and throat
5000	< 30 mins	Kills quickly

Impacts on Poultry Animal Health

- At level of 10 ppm, trachea irritation was shown in turkeys.
- At above 25 ppm, growth rate and feed conversion was impaired and the final body weight was reduced.
- At levels of above 50 ppm, the birds are more susceptible to bacterial infections such as E. coli.
- At above 100 ppm, the chick mortality was increased significantly.

NH₃ and Particulate Matter⁶

Ammonia gas can react with sulfuric and nitric acids in the atmosphere to form fine particles

◆ NH_{3 (g)}+H₂SO_{4(g)} → (NH₄)₂SO4_(g,l) (ammonium sulfate)

◆ $NH_{3 (g)} + HNO_{3(g)} \rightarrow NH_4NO_{3(g,l)}$ (ammonium nitrate)

NH₃ and PM_{2.5}

Source: Anderson N., R. Strader, and C. Davidson. 2003. Airborne reduced nitrogen: ammonia emissions from agriculture and other sources. Environment International. 29(2003): 277-286.

Its Environmental Impacts Cont...

- Ammonia deposition or wet deposition to the ecosystem leads to over-fertilization or eutrophication.
- The nutrient imbalance in the soil can be harmful to some crops while excessive nutrients in aquatic systems lead to decreased biological diversity;
- Ammonium sulfates deposited into soil and water systems can also get oxidized to form a mixture of nitric and sulfuric acids to cause ecosystem acidification.
- ★ Conversion to ammonium ion, and subsequently PM_{2.5}, its aerosol form, and eventual smog formation.

Overview of Effective BMPs and BATs for Ammonia Emissions from Poultry Facilities

Principles for Mitigating NH₃ Emissions in Animal Buildings

- Minimize air emission generation at the sources
- Reduce ammonia emission in the building
- Reduce ammonia emission at manure storages
- Capture ammonia emission at the exhausts of poultry facilities

Factors Affecting NH₃ Emission and Transport

- Dietary Factors
 - * Excess crude protein in diet
 - Low conversion of dietary N to animal products
 - ⋆ Total nitrogen content
- Environmental Factors
 - ⋆ pH
 - * Temperature
 - * Moisture content
 - ⋆ Chemical and microbiological activities--additives
 - * Ammonia concentration of air
 - Ventilation air / wind speed
- Manure Handling
 - * Manure storage time
 - ⋆ Diffusive and convective transport in the manure

Diet Manipulation and Feed Additives

One of the most important means of mitigation of air emissions

- Reducing nitrogen intake and using synthetic amino acid to reduce NH₃ emission.
- Adding dietary fiber to reduce ammonia emission (Xin, 2011)
- Balancing feed ingredients and improving the digestibility to reduce odor and ammonia emissions.

Manure Additives for Odor and Gas Control

Chemical and biological substances added to manure that

- Change manure pH: Alum (liquid or powder), ferric sulfate, sodium bisulfate
- Adsorb ammonium: Zeolite
- Change manure microbial population: many products on market

Alum has been applied to Layer Manure and Broiler Litter

- Alum has been shown to reduce ammonia volatilization very significantly during a 42-day incubation of poultry litter
- A field test at a Ohio layer facility showed that Aluminum Sulfate (Liquid Alum) and Aluminum Chloride (AICI3) spraying system reduced NH₃ emission by 33%- 40% in short test periods.

Good Manure Handling Practice

- Keep Manure dry
- Remove manure out of the building
- Store manure in cool, covered facilities
- Reduce manure storage surface area

Poultry Facilities and NH₃ Emissions

Poultry Facilities and NH₃ Emissions

- Two times
 nitrogen
 conservation
 rate than the
 deep-pit high rise layer
 facilities (Keener
 et al. 2002)
- High ammonia concentrations in the composting building

Biofilter

- Odor reduction80% 90%
- H₂S reduction
 80% 90%
- NH₃ reduction
 50% 60%

Use water to "scrub" air leaving buildings. Water recirculates through evaporative pad scrubber. Used with power ventilation systems

- Total dust reduced
 - * 20% 60% reduction
- Ammonia reduced
 - * 33% 50% reduction
- Odors were slightly reduced

Wet Scrubbers

Use water and chemicals to "scrub" air pollutants laden air steams leaving buildings

Two types of Wet Scrubbers:

- European Acid packed bed wet scrubber or fiber bed acid scrubber— ammonia removal efficiencies of 63%-98% with an average of 81% (Melse et al., 2005, 2008)
- OSU acid spray wet scrubbers can achieve NH₃ removal efficiencies of 99%-75% at 5-400 ppm inlet NH₃ concentration (Manuzon et al. 2007)

Schematics of Wet Scrubbers

Spray

Packed-Bed

Fiber-Bed

European Fiber Bed Wet Scrubbers

Packed –bed and 3-stage scrubber:

Capital cost: \$47-\$72/pig

Operation cost:\$15-\$19/year

Ammonia Removal

OSU Spray Acid Wet Scrubber

Spray scrubbers

- >spray system has low back pressure
- >scrubbing liquid recycled as fertilizer

Summary Points

- Inefficient conversion of feed N to animal products resulted in N excretion as ammonia.
- ◆ Total nitrogen in manure, temperature, pH, manure moisture level, and microbial activities affect ammonia generation. Air speed, ammonia concentration, and weather conditions affect ammonia dispersion and transport
- High level of ammonia has significant health effects on human and poultry animals
- Ammonia emission is a pre-cursor of PM2.5 particle and cause ecosystem eutrophication and acidity.

Summary Points (Cont.)

- Effective BMPs and BATs to reduce NH3 emissions from poultry facilities are:
 - Diet manipulation and feed additives
 - Manure additives
 - Drying manure
 - Storing manure in cool and covered space with small manure surface area
 - Composting manure
 - Adopting manure belt building systems
 - Using wet scrubbers to capture ammonia for fertilizer

Thank You! Qestions?

Lingying Zhao

Associate Professor and Extension Specialist

Dept. of Food, Agri. and

Biological Engineering

The Ohio State University

Phone: (614) 292-2366

Fax: (614) 292-9448

Email: zhao.119@osu.edu

