Manure Storage Covers for Air Emission Reduction #### **Lingying Zhao** Associate Professor and Extension Specialist Dept. of Food, Agri. and Biological Engineering The Ohio State University #### **Overview** - Introduction of Air emission from liquid manure storage - Manure Storage Covers and Its Effects on Air Emission - Biogas Production with Covered Manure Storage - Summary # A swine gestation facility # A free-stall dairy facility ### **Liquid Manure Storage Ponds or Lagoons** #### Air Emissions from Open Manure Storages #### **Covered Manure Storages— Abates Air Emissions** ## **Floating Permeable Covers** - Natural crust - Biomass material, such as straw, cornstalks, and peet moss. - Synthetic materials, such as clay ball, geotextile fabric, foam, and ground rubber. #### **Effects of Permeable Covers** - NH₃ reductions by >70% - Reductions of odor and H₂S are generally >50% - Increased emission of CH₄ (up to 30%) #### Impermeable Synthetic Covers - Rigid (wooden or concrete) or flexible (plastic) covers hold gases and odors inside manure storages - Most flexible covers float on the liquid surface. #### **Effects of Impermeable Covers** - Gas emissions reduction efficiencies of an inflated cover 80% - 95% (Funk et al.,2004) - Odor reduction 50-80% (Bicudo et al., 2001) - NH₃ reduction 50% to 90% (Misselbrook et al., 2005) - H₂S reduction emission up to 80% (Bicudo et al., 2001) Effects on GHG have not been reported # **Summary of Covers and Performance** | | Effectiveness (%) | | | | | Capital cost | | |---------------|--|-------------------------------------|---|---------------------------------------|--|---|-----------------------------------| | Type of cover | Material | Odor | H ₂ S | `ŃH3 | Life expectancy | (US\$/yd ²) | Reference | | Impermeable | Concrete lid
Wood lid
Inflatable plastic
Floating plastic
(HDPE) | 95
95
95
60-78 | N/A
N/A
95
90 | N/A
95
95
N/A | 10-15 years
10-15 years
10 years
10 years | N/A
N/A
7-15
3-5 | 1
1,2,3
1,4
5 | | Permeable | Straw Geotextile Geotextile + straw Leca® Macrolite® | 40-90
40-65
50-80
90
60 | 80-94
30-90
60-98
N/A
64-84 | 25-85
0
8-85
65-95
N/A | Up to 6 months
3-5 years
N/A
10 years
10 years | 0.25-1
1.25-1.6
1.5-2.6
15.45
15.45 | 1,5,6,7,8,9
9
9
3,7
5 | | References | 1 Mannebeck, 1985
2 DeBode, 1991
3 Sommer et al., 199 | 5 l | Clanton et | d Gaakeer,
t al., 1999
us, 1993 | 8 Jaco | ty et al., 1997
bson, 1998
ton et al., 2001 | | #### **Cover Design Considerations** - Purpose of the cover - Reduction of odor - Reduction of specific gases - Reduction goal - Type of storage - Permeable cover on earth structures - Impermeable covers not easily installed on earthen structure - Concrete lids don't work on steel tanks or earthen structures #### **Cover Design Considerations** - Size of storage - Bio-cover not practical on structures +2 acres - Manure Management - Geotextile/HDPE fabrics not recommended for storages that are pumped frequently or rigorous agitation - Covers not recommended for recycling flush water....dissolved gases released - Impermeable covers do not permit rainfall from entering system or for evaporation out of the system - Permeable covers allow rainfall in but may restrict evaporation - COST!!! # Biogas Production and Carbon Credits with Covered Manure Storages #### Manure Storages with Covers -- Natural Temperature Digester - Reduced odor, NH₃, and H₂S emissions - Captured CH₄ - Relatively low cost - Simple management - Fluctuated CH₄ production ## Flaring CH₄ for Carbon Credits biogas is not used well - Flaring methane captured by covers creates carbon credits, another line of income. - Environmental Credit Corp. has contracted several dairies across the US under its <u>lagoon cover program</u> to carbon credits - Methane captured is a potential source of on-farm energy. Better use of the biogas collected need to be explored. # Preliminary OSU Research on a Covered Manure Storage #### **Biogas Production of a Covered Dairy Manure Storage** #### **Summary** - Manure storages are major sources of air emissions on farms including odorous gases and greenhouse gases. - Among gas emission abatement options, impermeable covers are not only very effective, but also have potential to create on-farm bio-energy and generate carbon credits. - Research is needed to quantify methane emissions from manure storages for better use of the biogas and accurate calculation of carbon credits. - We need to develop better use of the biogas generated from covered manure storages. # Thanks. #### **Lingying Zhao** Associate Professor and Extension Specialist Dept. of Food, Agri. and Biological Engineering The Ohio State University Phone: (614) 292-2366 Email: zhao.119@osu.eed