Manure Storage Covers for Air Emission Reduction

Lingying Zhao

Associate Professor and Extension Specialist

Dept. of Food, Agri. and Biological Engineering

The Ohio State University

Overview

- Introduction of Air emission from liquid manure storage
- Manure Storage Covers and Its Effects on Air Emission
- Biogas Production with Covered Manure Storage
- Summary

A swine gestation facility

A free-stall dairy facility

Liquid Manure Storage Ponds or Lagoons

Air Emissions from Open Manure Storages

Covered Manure Storages— Abates Air Emissions

Floating Permeable Covers

- Natural crust
- Biomass material, such as straw, cornstalks, and peet moss.
- Synthetic materials, such as clay ball, geotextile fabric, foam, and ground rubber.

Effects of Permeable Covers

- NH₃ reductions by >70%
- Reductions of odor and H₂S are generally >50%
- Increased emission of CH₄ (up to 30%)

Impermeable Synthetic Covers

- Rigid (wooden or concrete) or flexible (plastic) covers hold gases and odors inside manure storages
- Most flexible covers float on the liquid surface.

Effects of Impermeable Covers

- Gas emissions reduction efficiencies of an inflated cover 80% - 95% (Funk et al.,2004)
- Odor reduction 50-80%
 (Bicudo et al., 2001)
- NH₃ reduction 50% to 90% (Misselbrook et al., 2005)
- H₂S reduction emission up to 80% (Bicudo et al., 2001)

 Effects on GHG have not been reported

Summary of Covers and Performance

	Effectiveness (%)					Capital cost	
Type of cover	Material	Odor	H ₂ S	`ŃH3	Life expectancy	(US\$/yd ²)	Reference
Impermeable	Concrete lid Wood lid Inflatable plastic Floating plastic (HDPE)	95 95 95 60-78	N/A N/A 95 90	N/A 95 95 N/A	10-15 years 10-15 years 10 years 10 years	N/A N/A 7-15 3-5	1 1,2,3 1,4 5
Permeable	Straw Geotextile Geotextile + straw Leca® Macrolite®	40-90 40-65 50-80 90 60	80-94 30-90 60-98 N/A 64-84	25-85 0 8-85 65-95 N/A	Up to 6 months 3-5 years N/A 10 years 10 years	0.25-1 1.25-1.6 1.5-2.6 15.45 15.45	1,5,6,7,8,9 9 9 3,7 5
References	1 Mannebeck, 1985 2 DeBode, 1991 3 Sommer et al., 199	5 l	Clanton et	d Gaakeer, t al., 1999 us, 1993	8 Jaco	ty et al., 1997 bson, 1998 ton et al., 2001	

Cover Design Considerations

- Purpose of the cover
 - Reduction of odor
 - Reduction of specific gases
 - Reduction goal
- Type of storage
 - Permeable cover on earth structures
 - Impermeable covers not easily installed on earthen structure
 - Concrete lids don't work on steel tanks or earthen structures

Cover Design Considerations

- Size of storage
 - Bio-cover not practical on structures +2 acres
- Manure Management
 - Geotextile/HDPE fabrics not recommended for storages that are pumped frequently or rigorous agitation
 - Covers not recommended for recycling flush water....dissolved gases released
 - Impermeable covers do not permit rainfall from entering system or for evaporation out of the system
 - Permeable covers allow rainfall in but may restrict evaporation
- COST!!!

Biogas Production and Carbon Credits with Covered Manure Storages

Manure Storages with Covers -- Natural Temperature Digester

- Reduced odor, NH₃, and H₂S emissions
- Captured CH₄
- Relatively low cost
- Simple management
- Fluctuated CH₄ production

Flaring CH₄ for Carbon Credits biogas is not used well

- Flaring methane captured by covers creates carbon credits, another line of income.
- Environmental Credit Corp.
 has contracted several dairies across the US under its
 <u>lagoon cover program</u> to carbon credits
- Methane captured is a potential source of on-farm energy. Better use of the biogas collected need to be explored.

Preliminary OSU Research on a Covered Manure Storage

Biogas Production of a Covered Dairy Manure Storage

Summary

- Manure storages are major sources of air emissions on farms including odorous gases and greenhouse gases.
- Among gas emission abatement options, impermeable covers are not only very effective, but also have potential to create on-farm bio-energy and generate carbon credits.
- Research is needed to quantify methane emissions from manure storages for better use of the biogas and accurate calculation of carbon credits.
- We need to develop better use of the biogas generated from covered manure storages.

Thanks.

Lingying Zhao

Associate Professor and Extension Specialist

Dept. of Food, Agri. and Biological Engineering

The Ohio State University

Phone: (614) 292-2366

Email: zhao.119@osu.eed

