Biofilter performance in ammonia mitigation

Ted Funk, PhD, PE

Department of Agricultural and Biological Engineering

University of Illinois at Urbana-Champaign

Topics for today

- Part I: Intro—what's a biofilter all about?
 - What we know, and don't know, about ammonia mitigation in biofilters
 - Our research—what else happens during biofiltration?
- Part II: Our biofilters, our design philosophy
 - What's next
 - Our partners

What is a Biofilter?

- Layer of organic material, filtering air contaminated with pollutants
 - Contains/supports a microbial population
 - Receives odorous air forced through it by fan(s)
 - Microbes convert compounds in the odorous air to other products, some of which stay in the biofilter, some are non-odorous

One low-cost biofilter format: IA study

Photos: Hoff et al. 2009.

Field research results

- Hoff et al. 2009. 73% reduction of ammonia in pit fan exhaust, with a 3.25 second calculated EBRT with a 25 cm media depth.
- Averaging about 10 ppm input, always < 20 ppm

Nitrification in a Biofilter

Proposed by G.
Baquerizo et al. /
Chemical
Engineering Journal
113 (2005) 205–214

Step 1: Step 2: Absorption/adsorption Nitrification

Nitrosomonas
$$NH_3 + O_2 \rightarrow NO_2^- + 3H^+ + 2e^- \qquad (1)$$
Nitrobacter
$$NO_2^- + H_2O \rightarrow NO_3^- + 2H^+ + 2e^- \qquad (2)$$

In-ground manure tank headspace vent odor control: an Illinois field study

Biofilters reduce air emissions

- Reduce ammonia about 60%
- Reduce hydrogen sulfide about 80%
- Cut odor 60-80%
- BUT without good management, N₂O emissions[†] can be produced

Biofilter performance field tests: Sampling points

Interpreting Field Results: a messy business

Interpreting Field Results: a messy business

Interpreting Field Results: a messy business

Interpreting Field Results: a messy business

The whole picture on ammonia attenuation via biofilters

- Is the biofilter still, after years of research, a "black box" regarding ammonia transformation?
- Nitrogen cycle in a biofilter appears to be similar to the N cycle in soils
- Nitrate is the endpoint, and it stays in the biofilter...
- ...unless there's the occasional flush of liquid

Factors in ammonia attenuation

- Time
- Temperature
- Moisture availability for biofilm
- Concentrations of NH₄⁺, NO₂⁻, NO₃⁻ in the media that inhibit microbial processes

Ammonia Removal Performance: lab scale biofilter (IL)

Critical Elements for Further Study

- Snapshot performance measurement vs. longterm
- Can we control moisture content to attain our performance goal?
- What EBRT in the biofilter is necessary for NH₃ attenuation?
- Keeping the whole biofilter aerobic seems to be critical for avoiding production of N₂O

Biofilter container formats

- Bottom fed upflow (also industrial applications)
- Top fed upflow
- End fed sideflow
- Side fed sideflow
- Other commercial oddities

Many creative biofilter container formats

Other (commercial) formats

Air Movement in a Top-fed Upflow Biofilter

Can biofilters treat all the air from my building?

Recommendation: treat the air from the pit fans or other minimum-rate fans (Hoff et al, 2009)

Matching fan and biofilter performance

Get test data on your fans at www.bess.illinois.edu

TEST RESULTS				
MULTIFAN 4E63-3PP-S3C				
	Static Pressure	Speed	Airflow	Efficiency
Test: 96300	in. water 0.00	<u>rpm</u> 1666	<u>cfm</u> 5830	cfm/Watt 16.5
Fan description:	0.05	1658	5560	15.2
24" direct drive, 0.43 kW Vostermans	0.10	1648	5280	14.4
4E63-3PP-S3C motor, plastic housing,	0.15	1642	4980	13.1
plastic shutter, guard and discharge cone	0.20	1635	4640	12.1
	0.25	1631	4370	11.1
	0.30	1626	3890	9.8

$\Delta P_k := depth$	$\mathbf{a} \cdot \left(\mathbf{Q_k}\right)^2$		
	$ln(1 + b_{.H1} \cdot Q_k)$		

Pressure Drop with different Flow Rates (cont.)

Media	Moisture Content, wt%	Α	В	R ²
medium shreded mulch	52.14%	10025	10.46	0.9984
medium shreded mulch, compacted	52.14%	15687	13.19	0.9985
fine shreded hardwood mulch	54.39%	24378	7.983	0.9988
Fine shreded hardwood mulch, compacted	54.39%	35339	7.977	0.9995
acidified pine mulch	55.09%	15628	11.47	0.9989
Fresh chipped hardwood mulch	41.67%	23267	61.17	0.9982
Composted chipped hardwood mulch	53.45%	26240	25.94	0.9997
Leaf compost	51.42%	60739	12.50	0.9996
Leaf compost, compacted	51.42%	93298	11.08	0.9996
Manure compost	65.58%	112231	14.85	0.9995

Summary:

Hukill and Ives Equation fit good for both compact and un-compacted media;
 A and B may closely relate to physical and chemical properties of media.

Biofilter system curve for specific biofilter media

Biofilter Management for Performance

- Moisture content of media
- Monitor leachate and its fate
- Watch pressure drop for big changes
- Empty and replace media as needed

Biofilter moisture addition methods

- Gas phase humidification systems
- Sprinklers and sprayers
- Soaker hose
- Continuous trickling biofilters

Big challenge: Biofilter moisture instrumentation & control systems

- Manual (put your hand in and feel a sample)
- Pointwise (see literature on soil moisture measuring instruments)
- Large-format capacitor method

Resources

- Hoff, S.J., J. D. Harmon, L. Chen, K. A. Janni, D. R. Schmidt, R. E. Nicolai, L. D. Jacobson. 2009. Partial Biofiltration of Exhaust Air from a Hybrid Ventilated Deep-Pit Swine Finisher Barn. Applied Engineering in Agriculture. 25(2): 269-280.
- Melse, R.W., N. W. M. Ogink. 2005. Air scrubbing techniques for ammonia and odor reduction at livestock operations: review of onfarm research in the Netherlands. Trans. ASAE, Vol. 48(6): 2303–2313
- Del Nero Maia, G.; Day V, G.B.; Gates, R.S.; Taraba, J.L.; Sales, G.T.; Lovanh, N. 2009. Ammonia removal and nitrous oxide production in gas-phase compost biofilters. Proc., I Simpósio Internacional sobre Gerenciamento de Resíduos de Animais, Emissão de Gases Associados a Produção Animal e ao Manejo de Dejetos. 11 a 13 de Março de 2009 Florianópolis, SC Brasil.

Acknowledgements

- Mr. Liangcheng Yang, graduate student
- Dr. Richard Gates
- Dr. Xinlei Wang
- Funding support by:
 - IL Office of the Attorney General
 - USDA NRI program, in collaboration with South Dakota State University and University of Kentucky
- And programmatic support from:
 - IL Pork Producers Association
 - Illinois Environmental Protection Agency

Summary

- Biofilters are pretty good at removing odor
- They also can remove some ammonia most of the time
- But if they produce nitrous oxide, which is sure to be regulated, we may have lost ground
- How do we control performance and balance risk?

